

INTRODUCTION TO CRITICAL ENVIRONMENT TECHNOLOGIES'

A2L REFRIGERANT MONITORING

PRESENTED BY ALEX VAN BALLEGOOIE

AGENDA

WHY MONITOR REFRIGERANTS

SAFETY & ECONOMIC CONSIDERATIONS

PROTECT LIVES PROTECT PROPERTY

PROTECT THE ENVIRONMENT

SAVE MONEY

CONSIDERATIONS

- Compressors, condensers, evaporators, refrigerant feed lines are common leak sources
- Caused by pitting, corrosion, small fatigue cracks in the coils, valves and seals from repeated thermal cycling
- Smaller cubic volume areas will have a higher and quicker rise in gas concentration whereas a larger area result in a diluted concentration until it builds up
- Adequate coverage of the common leak points may require installation of multiple gas detectors

TYPES OF REFRIGERANTS

REFRIGERANT TIMELINE

A2L Classification

REFRIGERANT SAFETY GROUPS

Refrigerant Safety Groups (examples)	Lower Toxicity OEL > 400ppm	Higher Toxicity OEL < 400ppm
Higher Flammability	A3 all hydrocarbons	В3
Lower Flammability HCFs, non-fluorocarbons	A2 R-152a	B2
Lower Flammability (Mildly Flammable) Low Burning Velocity HCFs, HFC/HFO Blends, HFOs	A2L R-32, R-452B, R-454B, R-455A, R-516A, R-1234yf, R-1234ze(E)	B2L ammonia (R-717)
No Flame Propagation HFFCs, HFC/HFO Blends, HFOs, HCFOs, HFO/chloro-olefin blends, non-fluorocarbons	A1 R-134a, R410A, R-448A, R-449A, R-460B, R-513A, R-515A, R-1336mzz(Z), R-1233zd(E), CO ₂ (R-744)	B1 R-245fa, R-514A

REGULATORY AUTHORITIES

IMC

INTERNATIONAL MECHANICAL CODE

TYPE OF REFRIGERANTS

Gas detectors monitor the following refrigerants:

- R-22, R-32, R-123, R-134a, R-143a, R-227ea, R-402a, R-404a, R-407a, R-407c, R-407f, R-410a, R-417a, R-422a, R-422d, R-427a, R-434a, R-438a, R-442a, R-448a, R-449a, R-450a, R-452a, R-453a, R-454a, R-454b, R-455a, R-507, R-513a, R-514a
- HF01234yf, HF01234ze, HF01233zd
- R-SF6 Sulphur Hexafluoride
- R-717 Ammonia (NH₃)
- R-744 Carbon Dioxide (CO₂)
- R-290 Propane (C₃H₈)

A2L REFRIGERANTS

	Health Hazards	Safety Group	LEL (vol)	UEL (vol)	LFL	RCL	OEL	TWA (8 hrs)	STEL (15 min)	IDLH
R-32	Low toxicity, mildly flammable, asphyxiant, frostbite	A2L	13%	33%	144,000 ppm	36,000 ppm	1,000 ppm	1,000 ppm	n/a	n/a
R-1234ze	Low toxicity, mildly flammable, asphyxiant, frostbite	A2L	n/a	n/a	65,000 ppm	16,000 ppm	800 ppm	800 ppm	n/a	n/a
R-452b	Low toxicity, mildly flammable, asphyxiant, frostbite	A2L	12%	23.3%	119,000 ppm	30,000 ppm	870 ppm	1,000 ppm	n/a	n/a
R-454b	Low toxicity, mildly flammable, asphyxiant, frostbite	A2L	11.25%	22%	77,000 ppm	19,000 ppm	850 ppm	1,000 ppm	n/a	n/a

CET Alarm Setpoints:

LOW RANGE: Low = 250 ppm / Mid = 500 ppm / High = 1,000 ppm HIGH RANGE: Single setpoint at 25%LEL

LEL = Lower Explosive Limit UEL = Upper Explosive Limit LFL = Lower Flammability Limit RCL= Refrigerant Concentration Limit OEL = Occupational Exposure Limit TWA = Time Weighted Average STEL = Short Term Exposure Limit IDHL = Immediately Dangerous to Life or Health

REFRIGERANT SENSOR TECHNOLOGY

REFRIGERANT SENSOR TYPES

	Low Range Solid State (MOS) Refrigerant Sensor	Low Range Dual Beam Infrared Refrigerant Sensor	High Range Dual Beam Infrared Refrigerant Sensor
Range	0 – 2,000 ppm	0 – 2,000 ppm 0 – 500 ppm for R-123 0 – 5% vol for CO ₂ R-744	0 – 100% LEL
Minimum Detection	25 ppm	1 ppm	1% LEL
Life Expectancy	5 – 7 years	10 years	10 years
Calibration Frequency	Annual testing	Annual testing	Annual testing
Response Time	<2 minutes @T ₉₀	<2 minutes @T ₉₀	<2 minutes @T ₉₀

REFRIGERANT SENSOR TYPES

	Solid State (MOS) Refrigerant Sensor	Infrared Refrigerant Sensor
Response to changes in RH and Temperature	Sensitive to changes in RH and Temperature	Short term response to changes in temperature, RH may affect response and promote corrosion
Operating Environment	Wet or dirty/dusty environments will shorten lifespan	Wet or dirty/dusty environments can impair the ability of the optics to function and reduce sensor response
Cross Sensitivities	Other refrigerants and gases, vapours, chemicals, solvents, paints, etc.	May show slight response to hydrocarbons in solvents, cleaning agents
Exposure to high concentrations of target gas	More likely to be poisoned	Immune to poisoning
Continuous exposure to gas	Reading will become unreliable	Does not affect operation
Power Consumption	High	High
Cost	Economical	Expensive

MOUNTING HEIGHTS

CEILING: 6-12in (15-30cm) from ceiling

Lighter than air Ammonia (NH_3), Hydrogen (H_2), Methane (CH_4) **BREATHING ZONE: 4-6ft (1.2-1.8m) from floor** Carbon Dioxide (CO₂), Carbon, Monoxide (CO), Ethylene (C_2H_4), Formaldehyde (CH_2O), Same as air Oxygen (O_2) , Nitrogen Dioxide (NO_2) FLOOR: 6-12in (15-30cm) from floor Chlorine (Cl_2) , Hydrogen Chloride (HCl), Ozone (O_3) , Heavier than air Propane (C₃H₈), Sulphur Dioxide (SO₂), & most Refrigerants

Fixed refrigerant gas detectors should be mounted as close as possible to the common leak points and downwind from the direction of the forced air ventilation.

ASHRAE 15-2024 SAFETY STANDARDS & APPLICATION EXAMPLES

TIMELINE

Compliance dates for stationary residential and light commercial AC and heat pumps are:

- Manufacture and import: Jan. 1, 2025
- Installation for all except VRF: Jan. 1, 2025
- Manufacture and import for VRF: Jan. 1, 2026
- Installation for VRF: Dec 31, 2026

SHAFT & PIPING REQUIREMENTS

- **Groups A2, A3, B2, B3:** Continuous mechanical ventilation and refrigerant detector required.
- **Groups A2L, B2L:** Natural or mechanical ventilation required.
- **Pipe shafts with A2L or B2L:** Mechanical ventilation can be activated by a refrigerant detector.
- **Refrigerant detector:** Setpoint ≤ OEL, located where leaks concentrate.
- **Double-wall pipe:** No ventilation needed if interstitial space is vented outdoors per Section 9.7.8.2

SHAFT APPLICATION

DUCTED HVAC AND INSTITUTIONAL SYSTEMS

Critical Environment Technologies

ASHRAE 15-2024, SECTION 7.6.2.3

The following manufacturer's refrigeration systems shall have an integral Refrigeration Detection System:

- Ducted HVAC systems with a releasable refrigerant charge (m_{rel}) more than 4.0 lbs (1.8 kg) and with any
 duct openings less than 5.9 ft (1.8 m) above the finished floor.
- Ducted HVAC systems where spaces connected to the same supply air duct are used as the dispersal floor area to calculate volume as per section 7.2
- Refrigeration systems installed where the occupancy classification is institutional occupancy

RELEASE MITIGATION CONTROLS

ASHRAE 15-2024, SECTION 7.3.4.4

Integral Refrigeration Detection System Requirements:

- **Mitigation Controls:** Activated by refrigerant detection system.
- **Detector Location:** In all refrigerant equipment or spaces served by the mitigation-controlled circuit.
- **Function:** Activates mitigation controls and isolates refrigerant leak paths.
- **Compliance:** Must comply with Section 7.6.2.4 and activate the mitigation requirements as per Section 7.6.2.5

REFRIGERATION DETECTION SYSTEM

ASHRAE 15-2024, SECTION 7.6.2.4

Integral Refrigeration Detection System Requirements:

- Fixed, nonadjustable setpoint
- Generates output signal within 30 seconds when exposed to 25% LFL
- Access for replacement of detection system components
- The system cannot be recalibrated in the field.
- Must detect the specific refrigerant being used in the system
- Must perform self-checks

MITIGATION ACTIONS

Requirements:

Shall be completed in not more than 15 seconds after the initiation of the signal output and be maintained for at least 5 minutes after the output signal has reset.

- Turn on air circulation fans
- Open or set air duct zone dampers to full airflow
- Activate shutoff valves to reduce releasable refrigerant charge
- Activate mechanical ventilation if required
- De-energize connected electric resistance heat installed in air ducts
- De-energize all potential ignition sources

AC IN COMMERCIAL BUILDINGS

Continuous refrigerant monitoring: For leaks in the refrigerant piping running throughout the building from the outdoor refrigeration units typically located on the roof of the building. Ensures safety in buildings with HVAC systems.

Sensor Location: Depends on VRV system design and type of refrigerants being monitored. Both low range and high detectors may be required in different locations.

HOTELS

Refrigerant Monitoring:

Continuous monitoring in hotel rooms that use high efficiency, high volume refrigerant cooling and heating systems.

Sensor Coverage: Depends on VRV system design and type of refrigerants being monitored. Both low range and high detectors may be required in different locations.

SCHOOLS

Refrigerant Monitoring:

Continuous monitoring in occupied spaces in schools that use high efficiency, high volume refrigerant cooling and heating systems.

Sensor Coverage: Depends on VRV system design and type of refrigerants being monitored. Both low range and high detectors may be required in different locations.

MACHINERY ROOM GENERAL REQUIREMENTS

ASHRAE 15-2024, SECTION 8.9.5

Life Safety: Monitors for leaks, activates fans, shuts off chillers.

Sensor Location: Each chiller requires a dedicated sensor; mounted where leak likely to occur and 6in / 15cm from floor.

Requirements: Shut off switch outside room for immediate response to shut off equipment, internal relay to activate chiller shut off sequence, manual reset alarm inside room, Remote Display Module outside each entrance

MACHINERY ROOM SPECIAL REQUIREMENTS

- **Remote Control:** For immediate equipment shutdown, located outside the door.
- **Ventilation Fans:** Separate circuit, control switch outside the door.
- Ventilation System: Continuous or activated by the refrigerant detector(s); fire/smoke systems can override.
- Ventilation Duration: Continue at least 5 minutes after gas concentration drops below setpoint.
- **Gas Detection:** Refrigerant gas that exceeds 25% of the LFL or the upper detection limit of the detector, (whichever is lower) triggers automatic shutdown of compressors, pumps, valves, and ignition sources.
- Multiport Devices: Prohibited.

MACHINERY ROOM A2L DETECTOR REQUIREMENTS

ASHRAE 15-2024, SECTION 8.10 & 8.11

- **Detection:** Capable of detecting each specific refrigerant in the room.
- Alarm Setpoint: ≤ applicable OEL (lowest value if multiple gases) and ≤ applicable RCL (lowest value if multiple gases).
- **Self-Testing:** Automatic; failure sends trouble signal to monitored location.
- **Annual Testing:** During installation and once every year to verify compliance with setpoints and response times.

COLD STORAGE ROOMS

Sensor Location:

Refrigerants/CO₂ mounted 6 in from floor inside refrigerated room.

Compliance: Refrigerant detectors shall be installed as required in refrigeration machinery rooms in accordance with Section 8.9.5

Refrigerant Detector Setpoints, Response Times, Alarms and Ventilation Levels:

Setpoint	Response Time	Alarm Type	Alarm Reset Type	Ventilation Level	Ventilation Reset Type
≤OEL	≤300 seconds	Trouble	Automatic	Level 1	Automatic
≤RCL	≤15 seconds	Emergency	Manual	Level 2	Manual

- Visual and audible alarm inside machinery room and outside each entrance to the room
- Manual reset type alarms shall have the reset located inside the machinery room
- Other alarm levels and automatic reset alarms are permitted in addition to these requirements
- The meaning of each alarm must be marked by signage near each annunciator

SUMMARY

- Low-range detectors monitor for leaks approaching toxicity levels in occupied spaces like walk-in coolers and freezers, ensuring refrigerant concentrations stay below 8-hour TWA OEL levels.
- **High-range detectors** monitor areas with large refrigerant volumes, quickly detecting high concentrations that pose fire and oxygen displacement risks.
- **OEMs integrated high-range A2L sensors** into refrigeration equipment, but low-range detectors are still needed for slow leaks

RESOURCES FOR YOU

SPEC REVIEW SERVICE

ENGINEERING PORTAL

- Installation & User Manuals
- Engineering Specifications
- Product Datasheets
- Wiring Drawings & Diagrams

ENG.CETCI.COM

DRAWINGS & SUBMITTALS SUPPORT

- Comprehensive Materials List
- **Professional-Grade Drawings**
- **Detailed Wiring Diagrams** -
- Professional Datasheets

Quote 0323-385

Critical

nine 7 7 7 miles

The FCS-32 is a sophisticated, high performance syst The FCS-22 is a approximate in the formal configurations for controller that offers up to 32 gas channel configurations for monitoring toxic, combustible or refrigerant gases with versa control functionality for non-hazardous, non-explosion rated, commercial and light industrial applications. The FCS -32 is designed to accept inputs from digital and/or analog transmitter /or Peripheral Devices (in various combinations), using Addbus® RTU RS-485 or 4-20 mA analog input.

The FCS-32 is available in two models: FCS-32-M with Modbus® RTU RS-485 output or the FCS-32-B with BACnet® MS/TP RS-485 output for communicating with a Building Automation System (BAS)

Standard features include, 4 internal SPDT dry contact relays, 2 dedicated horn/strobe drives, a full colour LCD resistive touch screen with an LED panel indicating channel alarm status, relay status and fault conditions, an extensive menu system with assword protection, enhanced logic control, priorities / zoning apabilities, a USB port for firmware upgrades, data logging and a door-mounted audible alarm.

Optional value added features include, analog inputs and/or analog outputs, a top mounted strobe, a locking door, manual shut off switch, and a water tight audible alarm. The FCS-32 can be configured to comply with California Title-24

Building Energy Efficiency Standards. Specification details need to be given at time of order and additional settings can be implemented in the field as required.

Up to 32 channels of gas readings Graphic full colour, resistive touch LCD display with LED	INPUT / OUTP
indicators	Input
Four internal SPDT dry contact relays 2 horr/strobe output drives	(c.
 Up to 8 configurable internal analog inputs (optional) and/or analog outputs (optional) 	
Modbus® RTU RS-485 LAN protocol for communicating with transmitters and Peripheral Devices	Output
Modbus® RTU RS-485 (FCS-32-M) or BACnet® MS/TP RS-485 (FCS-32-B) WAN output for communicating with a BAS or DDC	
 Supports 4-20 mA and Modbus® driven VFDs Enhanced logic control, zoning and priorites capabilities USB port for firmware upprades 	Relays
 Configurable compliance with California Title-24 Building Energy Efficiency Standards 	Audible Alarm
 Standard water / dust tight, corrosion resistant enclosure (drip proof); with optional lockable door. IP54 rating with door mounted, water tight buzzer installed. 	
RoHS compliant circuit boards	

Note: Drawings above are shown with the optional door loc Enclosed Parking Facilities Food Processing Plants

 Chemical Storage Rooms
 Vehicle Maintenance Shops / Bus Barns
 Warehouse Distribution Centers Greenhouse Production Facilities and many more

MECHANICAL ABS / Polycarbonate, IP54 rating with door mounted, water tight buzze Enclosure nstalled copper coated Weigh 1.8 kg / 4 lbs 254 x 226 x 113 mm 10.0 x 8.9 x 4.44 in Size

USER INTERFAC 8.1 cm (3.2") graphic, 1/4 VGA full colour resistive touch LCD screen v

colour resistive touch LCD screen with LED indicators for "POWER", "STATUS 2 and 3" and "FAULT"

- 4-20 mA analog input (optional) - Modbus® RS-485 input - Modbus® RTU RS-485 WAt Modbuse RTU HS-485 (model: FCS-32-M)
 BACnet® MS/TP WAN (model: FCS-32-B) (model: PCS-22/6) 4-20 mA analog output (optional) Modbus® RTU RS-485 LAN - Two drive outputs for strobe/hom e.g.RSH-24V-R (0.5 A @ 24 VDC mail Four internal SPDT dry contact relay ated 5 A @ 240 VAC Standard loud, door mounte rated 90 dB @ 30 cm (1 ft) Optional door mounted, water tight buzzer, rated 85 dB @ 60.96 cm ()

0701 | @ 2021 Critical Environment Technologies Canada Inc. | Data subject to change without notice. | Toll Free. +1.877.940.8741 | www

ABOUT US

- Gas detection leader for almost 30 years, across design, manufacturing and service
- Gas detection is our only business we are specialized and laser-focused
- Sold in all states and provinces, and more than 20 countries globally
- +15 product lines, supporting +50 gasses, for +25 different applications
- State-of-the-art production, testing and R&D facilities

Our Mission:

WHAT MAKES US DIFFERENT

Best-in-Class Service Comprehensive Training Innovative Products Dedicated After-Market Support

Competitive Pricing

WHERE WE CAN BE FOUND

+100,000 UNITS SOLD

WHO WE WORK WITH

20,000 PROJECTS AND COUNTING

WE'RE HERE TO HELP

THANK YOU